Some classes of uniquely 3-colorable graphs
نویسندگان
چکیده
منابع مشابه
On uniquely 3-colorable planar graphs
A k-chromatic graph G is called uniquely k-colorable if every k-coloring of the vertex set V of G induces the same partition of V into k color classes. There is an innnite class C of uniquely 4-colorable planar graphs obtained from the K 4 by repeatedly inserting new vertices of degree 3 in triangular faces. In this paper we are concerned with the well-known conjecture (see 6]) that every uniqu...
متن کاملUniquely Edge-3-Colorable Graphs and Snarks
A cubic graph G is uniquely edge-3-colorable if G has precisely one 1-factorization. It is proved in this paper, if a uniquely edge-3-colorable, cubic graph G is cyclically 4-edgeconnected, but not cyclically 5-edge-connected, then G must contain a snark as a minor. This is an approach to a conjecture that every triangle free uniquely edge-3-colorable cubic graph must have the Petersen graph as...
متن کاملUniquely 2-list colorable graphs
A graph is called to be uniquely list colorable, if it admits a list assignment which induces a unique list coloring. We study uniquely list colorable graphs with a restriction on the number of colors used. In this way we generalize a theorem which characterizes uniquely 2–list colorable graphs. We introduce the uniquely list chromatic number of a graph and make a conjecture about it which is a...
متن کاملOn Uniquely List Colorable Graphs
Let G be a graph with n vertices and suppose that for each vertex v in G, there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k–list colorable graph. Recently M. Mahdian and E.S. Mahmoodian characterized uniquely 2–list colorable graphs. Here we state some results which will pave the way in character...
متن کاملSize of edge-critical uniquely 3-colorable planar graphs
A graph G is uniquely k-colorable if the chromatic number of G is k and G has only one k-coloring up to permutation of the colors. A uniquely k-colorable graph G is edge-critical if G − e is not a uniquely k-colorable graph for any edge e ∈ E(G). Mel’nikov and Steinberg [L. S. Mel’nikov, R. Steinberg, One counterexample for two conjectures on three coloring, Discrete Math. 20 (1977) 203-206] as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1974
ISSN: 0012-365X
DOI: 10.1016/0012-365x(74)90110-1